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EXPERIMENTAL IDENTIFICATION OF NONLINEAR STRUCTURAL MODELS

Thomas L. Paez

Experimental Mechanics Department
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Norman F. Hunter

Group WX 11
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Los Alamos, New Mexico

A fundamental objective of structural dynamic engineering is to
understand the behavior of physical structures subjected to field
environments. In practical situations, many structures execute nonlinear
motions, and under the influence of extreme excitations structures often
show strongly nonlinear responses. Recent investigations have shown that
the Yolterra model provides a means for system characterization that holds
great potential for the dexcription of nonlinear structural response.
Simulaticns have shown that when the Volterra model of a structure is
available, 1t can provide a reasonable match to numerically simulated
nonlinear response. The present investigation considers the identification
of the functicns used in the Volterra model for physical structures tested
ir the laboratory. It {s shown that the frequency domain form of the
Yolterra functions can be estimated directly using measured excitation and
response data. A coherence-1ike measurre of the observed structural
response and the nonlinear model is developed, and 1t is shown that this
quantity can be used to evaluate ths accuracy of the nonlinear structural
model. Finally, the characteristic: of structures most suitably modelled
by the Volterra series are discussed.
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iatroduction

Though 211 real mechanical systems excited by
field inputs dizplay same degree of nonlinear
response, the mmjority of all mechanicel
e¢engineering dynamic analyses performed, assume
that the structure under consideration is linear.
Further, the algorithms used to control laboratory
shock and vibration tests assume structural
linearity. = miajy situations the ljinearity
assumption is satisfactory. However, when
increased analytical or test precision i»
required, or when a mechanical system displays
substancially nonlinear behavior, it mey be
advantageous to use a nonlinear model for the
system.

Structural nonlinearity can be tr-ated in
severa]l different ways. In the apelyt.cal
iranework, scts of equations that model specific
nonlinearities in mechanical systems are often
doveloped and approximmte solutions sstaxblished in
closed form. (See References 1 and 2.; When the
equations of rotion cannot be smolved iu closed
form then numerical solution techniques are
sometimes developed. (See, for exanple,
Reference 3.) Anothcr general approach to the
solution of nonlinear problems is to mndel a
structure using a genoral mathemtical model whose
features may be made to match the characteriatics
of a mechanical syctem.

Fxamples of genzral matheamtical models for
nonlinear systemrs are the Volterra, Wianer, and
harmonic generating transfer function (HGTF)
models, and the nonlinear autoregressive -moving
average (ARW), and the threshold nonlinear ARMA
modela. These general approaches to system
modeiling are powerful and usefu: because they cun



be used o model entire classes of nonlinear
system behavior. (See References 4 through 8.)

When the functions recuired to characterize a
mechanical system, iu iue frarnework of a general
mathemmtical mndel, are known, then the behavicr
of the system can be described (and perhaps
controlled) in the general framework of the
mathemmtical model. This is advantageous when the
specific mathemtical form of a system
ponlinearity is unknown, yet it is reguired to
predict or control the system responre.

This paper studies the Volterra and HGTF
models for nonlinear structural rystems. An
efficient method for estimating the frequency
domain functjons of the models is developed, and
the use of this technique is Jdemonstrated for a
structure withicubic ® nonlianearity. A methcd for
using ordinary coherence to establish tb: accuracy
of a2 nornlinear model is also devcloped. Finally,
a discursion of the Volterra model and its
practical use in analysis and testing is
presented.

Idertification of Volterra Models

The Volterra model for a nonlinerar system is
cxpresscd by the equation
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where z(t) is the structural response at a point,
x(t) is the excitation, and h(j)(tl,...,tj) is the
jth order, j-variate kernel of the Volterra model.
The function h(1)(t) is the structure impulse
response function, and the higher order Volterra
kernels can be thought of as higher ordor impulse
response functions.

The FFourier transform of a time fupnction
reveals the source of its power in the frequency
damin. Pourier transformmtion of both sides of



(1) yields (See Reference 5.)
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where Z(f) and X(f) are the Fovrier transforms of

2(t) and x(t), respectively, and H(j)(f1,...,fn)
is the j-fold Fourier transform of

h(j)(e1,...,tj). HQ1)(f) is the frequency
response¢ function of the structure, and the higher
order terms, H(j)(f1,...,fj), can be thought of as

higher order frequency response functions. The
H(j)(f1,...,fj) will be referred to as the
Volterrs frequency functions, and tiey are the
coefficients in an expression thac characterizes
the Fourier transform of the response as a power
series in the Fourier transformm of the excitation.
Because the Fourier transform is unique, (2) can
be used to campute the response as well as (1).

Several approaches to the identification of
the Volterra kernels have been establlished for
both the apalytical and the experimental casecs.
(See Refcrences S and 6.) The Volterra frequency
functions can also be ecstimated using an
experimental approach. To develop a methnd for
the lideptification of the Volterra frequency
fucctions we consider the discrete form of (2).
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In this expression it is assumed that the Fourier
transforms are discrete Fourier transforms (IFT)



of discrete time functions like xj, j=0,...,n-1,
defined at times, tj=jst, j=0,...,n-1. The DFTs
are defined at frequencies fk=k/nst, k=0,...,n-1.
Zx, Xk, and H(j)k1,...,kj, correspond to the
functions Z(f), X(f), and H(j)(f1,...,fj),
respectively. The Volterra frequency functions,
H(j), have been written with a group of subscripts
followed by a final subscript separated by a
s@micolon. The firat group indicates the incices
of the frequencies where the excitation
originates; the final subscript indicates the
frequency where the response is considered.
Because the sum of the first group equals the
final subscript, this notation is redundant.
However, it emphacizes the source of the input
power in relation to the response, and it
simplifies the generalization of the model to be
done later.

To identify the Volterra frequency functions
we excite the structure under consideration wich a
stationary, normal randam process. The Volterra
frequency functions can be identified using a
sequence of camputations. Firat, we identify the
functions H(1)k. To do this, multiply both cides
of (3) by Xm* and take the expected value of the
resulting expression. The result is
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The orthogonality characteristic of the components
of the IXT of a stationary random process was -used
to obtain this result. The orthcgonality
characteristic is descr’'bed in Reference 7, and,
in summary states the following facts. When Xk,
k=0,...,n-1, are the components of the DFT of a
stationary randam process: (1) The expected value
of the product of any odd number of crmponents or
th&lr camplex conjugztes is zero. (2) The
expected value of the product of any pair of temms
Is zero except when their subscrip:s are equal and
one term is the conjugate of the other. (3) The
expected value of the product of any quadruplet of
terms /s zero except when pairs of terms have
squal subscripts and one term in each pair is the
conjugate of the other, etc.

The first order Volterra fiequency function
can be obtained from (). It is
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The higher order functions can be obtained in
a similar mapner. To gzt the second order
Volterra frequencx'f ctions we multiply both
sides of (3) by and take the expected
value. The result is
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where, again, the orhtogonality property of the
elements in the DFT of a stationary randam process
has been used. The second order Volterra
frequency function is
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The third order Volterra frequency function
can be obtained using the same approach. It is
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Equaticas (5), (7), and (8) are used as the
basis for estimmting the Volterra frequency
functions. In an experimental framework (either
analytical or laboratory), the following sequence
of operations can be used to establish estimates.

1. Measure excitation and response signals and
discretize them.

2. Divide the signals into blocks, and DFT the
signals. (The analyst may window the rignals,
firat, if desired. y use the FFT algorithm
to perform the I]’T.)!Jm

3.7 iing the DFT components in (ach block, form
the products that appear in the nunerators and
denaminators of (5), (7), snd (8)

4. Average the products cver zil nlocks to obtain
the sxpected value estimr:s.



5. Form the appropriate ratios of expected value
estimates to establish estimates of Volrerra
frequency functions.

A camputer program that executes these
operations has been written, and same results are
presented later in this paper.

A generalization of the Volterra model, given
in (3), is possible, and easily described in terms
of the Volterra frequency functions defined above.
It is known as the harmonic generating transfer
function model, and it was introduced in Reference
7. The model is
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This mode]l adds a degree of camplexity and a
degree of freedom to the Volterra model by using
an additional sum in each term on the right hand
side. For example, in a second order term, the
response at frequency index k has the potential of
being produced by inputs at any pair of
frequencies k1 and k2, not simply the frequencies
k1 and k-k1, as in the Volterra model. This
introduces the pctential for modelling subharmonic
power generation. The frequency functions of the
HGTF model can be identified using formulas like
(5), (7) and (8), except that arbitrary
combinations of indices can be used before the
semicolon, and these are not necessarily related
to the response index following the semicolon.

Spectral Density

The spectral density of the response of an
HGTF system can be established using (9). We
multiply each side of (9) by its own complex
conjugate, take the expected value, then normalize
the result by multiplying 2ach side by At/n. The
result is

(10)
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where (SZZ)k and (SXX)k are the spectral densities
of the response and the excitation, respesctively,
at frequency fk. The functions F(j) are
normalized forms of the HGTF frequency functions
that eliminate dependence of the estimates on the
analysis time period. Note in (7) and (8) that
the power of the terms in the numerator does not
match the power of the terms in the denaminator.
The functions F(j) are defined as
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and the occurrence of these functions in the
camputations leading to (10) confirms the time
independence of the response spectral density.

The computer program (mentioned above)
executes this camputation of (1) by estimating the
spcctral density of the measured excitation, then
using this result in (10) to obtain (SZZ)k.
Results obtained from the camputer code are
presented later in the paper.

Coberence Test for Nonlinear Models

Two of the ressons for formiug nonlinear
models of mechanical sysiems (like the Volterra
mode]) are (1) to assist us in understanding
system behavior, and (2) to permit us to predict
responses to arbitrary excitations. To assure
ourselves that a nonlinear model correctly
reflects the behavior of a system, it is necessary
to perform tests on the model that confirm its
validity. One such test, based on randam
excitation and response, might be described as
follows: (1) Measure the excitation and response
of a structure. (2) Use the measurements to
identify the system parameters. (3) Estimate the
spectral density of the measured response using
standard statistical techniques. (4) Compute the
spectral density of the response using the model
and the measured excitation. (5) Campare the



response spectral densities fram (3) and (4),
above. The quality of the model for predicting
the amplitude character of the response is
reflected by the closen:ss of the match described
in (5). (Only the amp.itude predicting ability of
the model is tested because phase information :s
ignored by the spectral density.)

It is also desirable to test the phase
predicting ability of a model, and an ordinary
coherence test that does this, in the randam
vibration framework, is described below. Let
{z(m)(t)} denote the randam process that is the
source of the measured response, and let {z(c)(t)}
denote the randam process that is the source of
the camputed response. Let (S(m))k denote the
spectral density of {z(m)(t)}, and let (S(c))k
denote the spectral density of {z(c)(t)}. Let
(S(nc) )k denote the cross-spectral density betwee:
{z(m)(t)} and {z(c)(t)}. Then the ordinary
coherence between the two randam processes is

defined N
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If the model exactly predicts the measured
response, then the two random procgrses are
identical, and the numerator in () is simply the
square of the response spectral cdensity. Further,
the two spectral densities in the denaminator are
identical, and each equals the response spectral
density. Therefore, the coherence is unity. Wren
the randam process {z(c)(t)} does not yield,
exactly, the_randam process {z(c)(t)}, theu the
coherence (£%) is not one. The value of the
coherence reflects the quality of the model in
predicting the measured response. In general, the
coherence is a strict measure of the similarity in
two randam processes.

The estimation of the coherence can be
implemented in a manner similar to the test
procedure described above. To estimate the
coherence we repcat the first four steps listed in
the test sequence. Next, we use °*he measured and
camputed responses to eatimate the crocs-spectral
density between these two random processes. (This
requires the use of a standard statistical
procedure.) Finally, we use the estimated
cross-spectral density and the estimated FER
autospectral densities to form the ratio in (4#2).

The camputer program developed in this study

T




can perform the coherence camputation, and the
results of an example are provided in the
Discussion section.

Application of Estimation Techniques to a
Classical Nonlinear System

The methods described in this paper for
estimmting parameters for the Volterra and HGTF
models and their associated spectral demsities
have been applied to several nonlinear systems.
Typiczl results are illustrated by application of
the techniques to a classical single degree of
freedamn system with a cubic stiffness
characteristic.

Description of the Nonlinear System

Since tase excited systems are camonly
encoun:ered in vibration testing and in some modal
applications, a base excited single degree of
freedam oscillator (with one rigid body mode) was
chosen for this example. A diagram of this system
is shown in Figure 1. The equations of motion
which describe this sysitem are as follows:

(13) 34 2$0.GxD 4RIy 4p (=P )= @
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The system is excited by a base acceleration x".
The cubic term is exercised to a degree where it
is significant, but not damainant. To achieve this
condition the system is excited by a random noise
input of approximately 25 g's RMS over a bandwidth
of about 700 Hz. The spectral density of the
system input is shown in Figure 2. Both the input
and response spectrai densities for the system are
based on 8192 data points which are averaged in 32
blocks with 256 points/block. The effective
sampling rate for the data is 2048 samples/second
and the Af is 8 Hz. The spectral density of the
system output is shown in Figure 3. A resonant
peak is evident at approximately 130 Hz and a
second peak occurs at 390 Hz. The 130 Hz peak
represents the fundamental response of the system.
This resonance has been shifted upward from the
100 Hz which would be expected for a linear system
by the stiffening effect of the cubic term. The
second peak at 390 Hz is produced by third
harmonic contributions fram the 130 Hz resonance.

Spectral Density Fstimates Frum the Zero, First

6



Order HGTF, and Qubic Volterrs Models
Zero Order Model Results

A linear system is campletely represented by
its zero order transfer function. This transfer
function is computed from (5) and the output
spectral density is then estimated using (10).

The system response and the spectral density
camputed from the zoro order model are campared in
Figure 4. The coherencc between the system and
model outputs is showmn in Figure 5. The spectral
density estimate fram the zero order model
provides a good ertimate cf the system response
from low frequencies up to frequencies in the
vicinity of 200 Herstz. Above 200 Hertz, and
expecially in the 300 to 450 Hertz region, the
zero order spectral density e¢stimate is poor. This
is &8s expected, as the zero order model dnes not
incorporatz any mcans of tccounting for the
hamonic generation that occurs in a cubic system.

First Order Mode]l Results

The next step in mwceling the cubic system is
an estimmtion oi the first order HGTF terms.
These terms are computed from (5) and the
asscciated spectral depsities are then calculated
ueing (10). The results of the spectral density
campuation based on this raw H(1) calculation are
showmn in Figure 6. In contrast to the zero order
model, which either clesely approximates or
underestimates the response spectral density of
the system, the first order model overestimates
the spsctral density everywhere except in the 300
to 450 Hz region. In the process of estimating the
magnitude and phase of the first order transfer
function terms in (5) an average over 32 blocks is
camputed. The expected value of this average is
zero if the magnitude of the HUTF term being
camputed is in fact insignificant. The variance
of the camputation, based on the 32 averages, is
nonzero. In general for each HOTF estimate a
nonzero spectral density will result even when the
trve magnitude of the HJTF term is in fact
insignificant. (crezrimmtion of the spectral
density occurs due :0 a sumcation of che spectral
densities computed from numerous low level H(1)
terms. To offaset this problem & confidence test
is used to determine the significance of the H(1)
toerms. Application of this test cffectively
eliminates many of the Hl terms. At a confidence
level of 50 percent virtually all of the H(1)
terms Are e¢liminated and the result for the first
order model is identical to that for the zero
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order model. Using only first order terms, a good
fit to the response spectral density occurs at a
confidence level of 20 percent. These results are
shown in Figure 7. Addition of epough first order
terms to fit the third harmonic response resul:s
in an overestimate of the spectrum in the 50 to
200 Hz region. This should be expected since the
significance of the first order terms in a cubic
system should be minimal. In fact, the fit which
occurs to the third harmonic peak using linear
terms is puzzling. In the author's opinions, the
significance of the first order terms in this sort
of analysis should be limited.

Third Order Volterra Model Results

Volterra transfer function terms were
computed using (5), (7) and (9). The response
spectral density estimate was then computed fram
the transfer function using (10). The results 1re
shown in Figure 8 where no terms have been dropped
(zero confidence level). Choosing confidence
levels fran 10 percent tc 50 percent graduaily
reduces the level of the model spectral density
until it 50 percent confidence there are no cubic
terms included and the response degenerates to the
zero order model. Inherent weaknesses in the
confidence test are believed to be the reason for
the low confidence levels at which mmny cubic
terms are rejected. Since relatively few Volterra
terms are included in the response spectral
density estimate for the third order model, noise
terma are generally less significant than in the
casc of the first order model. Coherence was
camputed for the cubic case and it is quity low.
Some possible ressons for this low coherence are
discussed in the following section.

Phase and Coheronce Measurements

To clarify the reasons for the low coherence
observed with the cubic model discussed above, a
phase measurement program was implemented. Since
the spactral estimates from the third order
Volterra model are accurate, the low coherence |s
attributed to problems in the phase estimates. The
computed phase for the transfer functicn was
compared to the phase of the system output for
each of the data blocks for both the linear and
nonlinear modeln. The mean and variance of the
difference between the camputed phase for the
traosfer function and the phase of each data block
was sumarized for various frequencies.



Recall that resonance for the linear system
occured at 100 Hes4z. For the nonlinear system the
resont.ace is more difficult to define accurately
but lies in the 120 to 140 Hesrtz range. Paase for
the linear system is as would be expected. Below
resonunce (32 Hz.) the system input and output are
essentiaily in phase and the block to block phase
variance is very low. At resonance the linear
system shows a mean phase difference between lnput
and output of about -90 degrees (4.90 radians) and
above resonance the input and output are close to
pi radians out of phase. The greatest variance in
the phase measurements for the linear system is
.53 radians at 100 Hestz. For the cubic system the —_—
pbase measurements generally show a -mich grester
variance (.36 to 1.28 rudians) even for the zero
order transfer fupnction. Phase differences for
higher order models show such large variances
(about 2 radians) that assigniny a clear meaning
to the phase results is difficult. The large
variance of these results may be explained by
considering the nonlinear nature of the resonance
in the cubic system. In this system the resonant
frequency varies with input level. Coasequently
each ULlock of data will cause the system to
exhibit a different resonant frequency. Since the
phase of a resonant system changes rapialy in the
vicinity of resonance it ls clear that pmuch more
variance in the input-output phase difference
would be expected for the cubic system. This
variance is further magnified when higher order
tranafer functions are considered. In the cubic
model the response phase would be expected to vary
approximatcly 3 times as widely as the input
phase. This is indeed observed as the variance of
the input phase in the third order mndel varies
fram .5 to 1 radian and the variance of the output
phase varies fram 2 to 3 radians. Such wide
variations in phase response inevitably lead to
poor coherence estimmtes.

Conclusions and Discuasion

It is clear fram the above results that the
methods outlined in th's paper for camputing
higher order trapsfer functions and spectral
densities can y®1d acceptable results when
applied to a system with a cublc stiffness
nonlionearlity. Spectral estimates obtained fram
the third order Volterra terms match the system
response In the region of the third harmonic
reasonably well. The significance of the first
order terms ls clearly open to question due to the
additive effects of nolse in the spectral



estimates. Prediction of spectral responses using
the zero order transfer function is good in the
region of the fundamental response but poor in the
region of the third harmonic response. Coherence
derived fram all estimates, zero through third
order, is poor in the region of the third hamonic
response. Sinc coherence is strcngly phase
sensitive, and :ince the magnitude results are
fairly accurate, the low coherence is attributed
to poor estimmte of the phase of the response in
the 300 to 450 Hestz region.

Nonlinear systems present many problems in
analvsis when campared to lincar systems.
Variations in "resonan’ frequency” and harmonic
generation are present oven in a relatively simple
system with a cubic stiffness characteristic. For
systems exhibliting significant nonlinearity the
concept of the transfer function must be extended
to include higher crder transfcr functions. These
functions regulatc the transfer of energy fram one
frequency to another. These transfer functions may
Ye defined in various toms, including the
Volterra and Harmonlic Generating forms noted here.
A method of estimating these higher order transfer
functions has been discussed in this paper, and
the spectral density estimmtes resulting from
using these transfer functions compared t> the
actual system response. Inhereant problems in the
phase estimation techniques used here lead to low
coherence batween the system output and the model
reaponses. Considerable work needs tc be done in
further defining the optimml form of higher order
tranafer functions for various types of nonlinear
systems.
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